안녕하세요! 오늘은 '해석 가능한 신경망'에 대해 알아보는 시간을 가져볼까 합니다. 머신러닝에 관심이 많은 분들이라면 한 번쯤 들어보셨을 이야기인데요. 왜 해석 가능한 신경망이 필요한가요? 머신러닝 모델, 특히 딥러닝 모델은 '블랙박스'라는 별명이 있죠. 이는 모델의 내부 동작 방식이 복잡하고 불투명하기 때문입니다. 하지만 이런 불투명성은 신뢰성 저하를 가져오며, 오류 발생 시 원인 분석을 어렵게 만듭니다. 특히 의료, 금융 등과 같이 중요한 분야에서는 심각한 문제를 일으킬 수 있죠. 그래서 '왜' 그런 결과가 나왔는지 이해하고 설명할 수 있는 '해석 가능한 신경망'이 필요하게 되었습니다. 해석 가능한 신경망을 어떻게 만드나요? 해석 가능한 신경망을 만드는 방법에는 여러 가지가 있습니다. 대표적으로 fe..