딥러닝에서 Uncertainty 추정에 관심을 갖다 보니 베이지안 딥러닝이 자주 보인다. 하지만 통계를 전공하지 않아 어려움이 많았다. 그래서 따로 기초부터 심화까지 정리를 하려고 한다. 우선 가장 기초인 베이즈 룰부터 시작한다. 베이즈 룰의 수식은 아래와 같다. $$P(B|A) = \frac{P(B \cap A)} {P(A)} = \frac{P(A \cap B)} {P(A)} = \frac{P(A|B) P(B)} {P(A)} $$ *$(P(A \cap B) = P(A|B)P(B))$ 이때 각각의 수식이 어떤 용어로 불리며 어떤 의미를 가지고 있는지를 잘 이해하고 있어야 뒤에 나오는 내용들을 이해하기 쉽다. 우선 $P(B|A)$ 는 구하고자 하는 값으로 Posterior Probability라고 하며 사..