Classification을 할 때 평가에 Precision이나 Recall 등이 필요할 때가 있다. Binary는 바로 지원이 되어 사용하면 되지만 Multi class의 경우는 따로 구현이 필요하다. 그에대한 Custom 함수를 김태영님의 블로그를 참고하여 Tensorflow 2.2 version으로 만들어 보았다. 모든 구현은 Label이 One-hot 형태가 아닌 int형 데이터일 때를 가정하였다. One-hot인 경우는 추가적으로 argmax를 해주는 과정이 필요하다. 위와 같은 Binary + Imbalanced Data 가 있을 때 , 모델이 예측치로 모두 파란색 공을 뽑아내면 제대로 학습이 되지 않았음에도 정확도가 80%가 나오게 된다. 따라서 Recall이나 Precision의 평가방법이..