simpling

  • 홈
  • 태그
  • 방명록

Likelihood 1

Likelihood, Maximum likelihood estimation 이란?

딥러닝 공부를 하다 보면 likelihood가 자주 등장한다. 기본적인 내용들을 다시 한번 remind 하기 위해 정리해둔다. Likelihood를 식으로 표현하면 다음과 같다. $$ L(\theta|D) $$ $\theta$는 parameter이고 D는 data를 의미한다. 식을 그대로 해석해보면, 가능도는 관측값(D)이 주어졌을 때(given) 관측값이 $\theta$에 대한 확률분포 $P(\theta)$에서 나왔을 확률이다. likelihood가 익숙하면서 안 익숙한(?) 이상한 느낌이 드는 이유는 likelihood와 비슷하게 생긴 $Pr(D|\theta)$라는 식을 자주 보았기 때문이다. 이 식은 '확률'을 나타내는데 중, 고등학교 과정에서 자주 봤었다. 확률은 가능도와 다르게 확률분포 $P(\..

머신러닝&딥러닝/기초정리 2021.08.29
이전
1
다음
더보기
프로필사진

인공지능 및 파이썬 공부를 하며 정리하는 공간입니다.

  • 분류 전체보기
    • 퀀트투자
    • Story
      • 여행
    • python
    • 머신러닝&딥러닝
      • Tensorflow&keras
      • 강화학습
      • 자연어처리
      • 논문리뷰
      • 기초정리
      • 베이지안
      • Torch
    • django
    • 컴퓨터 과학
      • 컴퓨터 구조
      • 운영체제
      • 네트워크

Tag

aleatoric, 마르코프, 일본여행, 딥러닝, Generalization, 트랜스포머, 베이지안 딥러닝, 자연어처리, bayesian, interpretable, uncertainty, self attention, bayesian deep learning, CNN, epistemic, multi-task-learning, TRANSFORMER, LSTM, swa, 경사하강,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

Archives

Copyright © Kakao Corp. All rights reserved.

티스토리툴바